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ABSTRACT

We introduce the notion of comparison of the criticality of two nodes in a
coherent system, and develop a monotonicity property of the reliability function
under component pairwise rearrangement., We use this property to find the optimal

component arrangement. Worked examples illustrate the methods proposed.
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1. Introduction

Optimal assignment of components (or optimal assembly) of a coherent system
has become increasingly important in reliability theory. Generally speaking, given a
coherent system with n nodes and N components with respective reliabilities

Pi---Pn.» We wish to find the optimal assignment of components to nodes to maximize

system reliability. For a series, parallel, and k-out-of-n system, the optimal
assignment was obtained by Derman, Lieberman, and Ross (1974). Recently El-
Neweihi, Proschan, and Sethuraman (1986) developed results for parallei-series and
series-parallel systems. The problem received greater attention after the
publication of the Derman, Lieberman, and Ross (1982) paper developing the optimal
arrangement for a “2-consectuve failures-out- of-n fails system™ and stating their

famous conjecture on the “k-consecutive failures-out-of-n fails system.”

If the numbers of nodes and components are the same (i.e., n = N) and if
each component is to be assigned to one node, then an assignment policy is just an
arrangement policy. In this case, we wish to find the arrangement which maximizes
system reliability. Using the notation in Barlow and Proschan (1981), we let ¢(x)
denote the structure function of the system and P = (Pys---sPn) denote the vector of
component reliabilities. Without loss of generality we assume that

0<p <P <. <Pn<1 (1)
and for obvious reasons, we avoid the trivial case p, = 0 or p, = 1. In real-life
applications the true values of the p,’s may or may not be known, and in most cases
they are unknown. Thus to obtain the main results in this paper, we assume
knowledge of only the ranks of the component reliabilities and not their actual
values. This situation occurs, for example, when the ages of the components are
known and when their common life distribution has an increasing failure rate. In
this case with mission length fixed, the component reliabilities can be inversely

ordered according to their ages.

Let ¥ = (7,...,xa) denote a permutation of (1,2,...,n) and let 7_r(1_>) denote the
vector (px,,px,..Pxa). Then for a givn permutation %, the corresponding reliability

function of the system ts h(x(p)) = Ew(p)cb().().

Assume a coherent system ¢(x) and component reliability vector p satisfying

(1). Then we state:

Definition 1. 3'0' = (‘K',O),...,w',,o‘) is said to be an optimal permutation 1f

h(r%(p) = max h(x(p)). )
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In this paper we provide a method for obtaining the optimal permutation (or
one of the optimal permutations if it is not unique) by a process of elimination.
This process depends on a notion of criticality of the nodes of a coherent system,
to be defined in Section 2. Our main theorem says that if the node i is more
critical than node j and if under the current permutation * a less reliable
component is assigned to node i, then an improvement is maede by interchanging the
components assigned to nodes i and j; we denote this interchange by =7,, and call the

resulting permuation a pairwise rearrangement. Consequently, * can be eliminated
(0

from further consideration. The optimal permutation ¥ is then determined from

the permutations not yet eliminated.

To illustrate how an optimal permutation depends on the criticality of the
nodes we consider the following example:

Example 1. Suppose that oil is to be pumped from location A to location B through

either nodes 1 and 2 or nodes 1 and 3.

} 1 {

Location A Location B

Figure 1.
If pumps with respective reliabilities p, < p. < p, are to be assigned to nodes 1, 2,
and 3, the problem is to find the assignment for which the reliability of the
coherent system with structure function
O(X,X2X;) = X(X: 8 X,)
1S maximized. We shall see that according to Definition 2 to be given in the next
section, node | is more critical than either of nodes 2 and 3. Thus by pairwise
rearrangements an optimal permutation is found; under it, the most reliable pump is

assigned to node 1. The details will be git'en in Example |’ o

The defimition of criticality of a node is given in Section 2. The main
theorem concerning criticality and pairwise rearrangements i1s then established. The
relationship between criticality and the well-known defimition of structural
importance of nodes i1s examined in Section 3. Finally, in Section 4 we state a
procedure for obtaining the optimal permutation via criticality and rearrangements,

and discuss examples and applications.
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Criticality of Nodes and Pairwise Rearrangements

Let x = (x...,xn) be a vector of binary variables and ¢(x) the structure
function of a coherent system. The components (with reliability vector g) are
assumed to function independently. For notational convenience, let (1,0, y"’5 be

(1

the vector x for which x, = ] and x;, = 0, and x * is the vector obtasined by

deleting x, and x, in x. The vectors (0,,1,,:_(“”), etc. and E“’”

are defined similarly.
Definition 2. Node i is more critical than node j for the structure function ¢
G S P if 8U,0,x") > #(0,1,,x"") holds for all x"” and strict inequality holds for

1
some 5[ ),

Note that this definition depends only on the structure function ¢(x) of a

coherent system, and not on the component reliability vector p.

Now tet * = (x,...,%s) and 7,; denote permutations as defined in Section 1.
If *, < x, then from (1) we have py, < Px,- Thus under the present permutation
7 a less reliable component is assigned to node i. If the components assigned to
nodes i and j are interchanged and the components assigned to the other nodes
remain the same, then the reliability function changes from h(?_r(g)) to h(‘l_r,,(g)), and

under the new permutation 7,, a more reliable component is assigned to node i.

Theorem 1. Let T be any permutation such that x, < ¥,. Then h(x,(p) > h(x(p)
holds for all P satisfying 0 < Px, < Px, < 1, with strict inequality for some p. if
and only if, i > j holds.

Proof. (a) (1) It is easy to see that for qr =1 — pr (r = 1,...,n),

oLl X" + axax,E_ ,#0,0,X""

h(x(p)) = PxPx, x(p)

E o

15 [REAN

)+ QW,P‘,rJEw( @01, X070

®(1,0,X
@ pl s *(p)

+ p?\’ﬂ?\’JET(p)

and that =(p)'”" = I,J(g';ﬁ. Thus if ¢(1,,0,,x'""" > ¢(0,1,x'""" holds for all x| then

h(IU(B)) - h(!(g)) = (p-,-\—qu' - PY'QW,)EW(p)(|“{¢(1l,OhXﬂlJ'} — ¢(0“1".Xllﬁ\] > 0.

(a) (2) Furthermore, if ¢(1,0,x(/) =1 > 6(0,1,x5/) = 0 for some x/!, then




we have
1 = h(m,(p)) > h(x(p)) = 0,

where p is a vector of 0's and 1l's such that Px, = 0, Px, = 1, and

Pr(p)[)_(“” = xiY] = 1. Since h(p) is a continuous function of p for p € [0,1]",

there exists a p € (0,1)" such that h(x,(p)) — h(x(p)) > 0.

) = @01 4x"") for all x'*¥ (in

(b) If i § j does not hold, then either ¢(1,,0,x
this case h(r,(p)) = h(x(p)) or there exists an x\!) such that #(1,0,x!!) = 0 and
¢(0,,1,,)_<“”) = 1. [n the latter case we conclude by an argument similar to that used
in (a) (2), that there exists a p € (0,1)" such that h(x,(p)) < h(x(p)) holds. This

completes the proof. a

For certain structure functions ¢(x) the minimum path vectors and minimum
cut vectors are easy to find. In these cases the criticality of two nodes may be

established in terms of such vectors.

Theorem 2. Let P,,...,Ps be the minimum path sets of a coherent system with nodes
l,...,n and structure function ¢(x). Let A, = {Pr:i € Pr, r = 1,..,R}. If A, is a
proper subset of A, (A; D A)), then i g Je

Proof. If A, O A, then without loss of generality we may assume that
AJ - {P"o-.,Prl}. A‘ =— {P"--..Pr2)

where r; < r,. Denote pr(x) = EnP Xi. Then for every fixed 5“
r

N
, we have

Pr(luo,.gs“'”) = pr(O,,l,.)_(“'”) =0 forr < r, and
pr‘(l”OJ,).(“”) 2 pr(onll.)_(“h) - 0 for rn<r <ry

un

with strict inequality holding for some r and x Moreover,

liJl»

pr(1,0,%""N = pr(0,1,x for r, < r< R,

It follows that

Hn.

IIJI) — ¢(01’1J'§ v

””) = 51 p"(lnop)_‘“”) & 51 0ri0p1 4%

¢(1,,0,,x
r= =

it itd)

holds for all x °, with strict inequality holding for some x

By a similar proof we immediately have
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Theorem 3. If in Theorem 2 the words “minimum path sets” are replaced by

“minimum cut sets,” then the theorem remains true.

To see that the converse of Theorem 2 (and of Theorem 3) is false, see the
example below:
Example 2. Consider a system of 6 nodes connected as shown in the following
diagram:

— 2

(1)
N

Figure 2.

c
It is easy to verify that 3 > 2 and that P, — (1,2,4) is @ minimum path set thaet
does not contain 3. 0

3. Criticality and Structural Importance

A well-known concept for comparing the relative importance of nodes in a
coherent system with structure function ¢(x) is based on the index of structural
importance. The structural importance index of node i is given by (Barlow and
Proschan (1981), p. 13)):

o) = s T [ellex) — 0¥
“ ()_(:X¢==1)
where (1,x) ((0,x)) denote the vector of x such that x, = 1 (x, = 0). For two
nodes 1 and j, we say that i is structurally more important than j if l¢(x') > l¢(J). In
the following theorem we show that the notion of criticality is in some sense

stronger than that of structural importance.

Theorem 4. Let i and j be two nodes of a coherent system with structure function
c
¢(x). If i > j, then I4(i) > 1403).

- o o
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Proof. The result is immediate from

oD — 160 = = T 16,0, — 60,1,5"1 > 0. 0

W
¥(

c
To see that l¢(i) > l¢(j) does not imply i > j, simply note the following
example.

Example 3. Consider a sysiem of 5 nodes connected as shown in the following

diagram:

)
U

)

Figure 3.
It is easy to verify that I¢(1) > I¢(3). But

0 = ¢(1,1,0,0,0) < #(0,1,1,0,0) = 1,
¢(1,0,0,1,0) > ¢(0,0,1,1,0) = O.

So neither 1 g 3 nor 3 g 1 holds. a

4. Optimal Arrangement Via Pairwise Rearrangements

In this section we give a procedure for obtaining the optimal permutation (or
one of them if it is not unique) by a process of elimination of inadmissible
permutations via pairwise rearrangements. Toward this end we first state a

definition of and develop a result for the permutation equivalence of nodes.

Definition 3. Let h(x(p)) = ET(p) #(X) be the reliability function of a coherent
system under permutation T¥. " Two nodes i and ) are said to be permutation

equivalent (p.e.) under 7 if h(x(p)) = h(rx,(p)) holds for all p.

The next theorem provides a characterization of permutation equivalence in

IR AR R o FL
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terms of the structure function ¢(x).

Theorem S. Nodes i and j are p.e. under any permutation ¥ if and only if ¢(x) is

permutation symmetric in x, and x; that is, ¢(x,,x,,g_c“‘") = o(x,,x,.;_c“”) holds for all
)
X .

Proof. (a) If ¢(x) is permutation symmetric in x, and x,, then

h(x(p)) = E )¢(X,,X,,)_(“'") =E )¢(xﬁxu>.(w))

x(p LE:

= EW,_,(p)"(Xux:o).(“”) = h(7,,(p).

(0) If ¢(1,0,%x09 = 1, ¢(0,1,%!)) = 0 for some x{?, then for the vector p with

aA W ¥ &

elements 0’s and 1's such that px, = 0, px, = I, F’,“,(l:')[)_(“"1 = x4 = 1, we have

Ry |
h(z(p)) = 0, h(z(p)) = 1. By continuity there exists a p € (0,1)" such that ’
h(x(p)) < h(x,(p). 0

Let Il denote the set of all n! permutations.

Definition 4. A permutation ¥ € II is said to be inadmissible if there exists a N
7 € I1 such that h(x(p)) < h(x’(p)) holds for all p satisfying (1) and strict )

inequality holds for some p.

From Theorem 2 we immediately obtain:

¢
Corollary 1. Let x be any permutation such that x, < x,. If i > j, then ¥ is 3
inadmissible. As a consequence, 7 should be eliminated from further consideration :

because 7, is a uniformly better permutation.

This suggests the following procedure for obtaining an optimal permutation

from the subset of permutations not yet eliminated:

Procedure. (a) Eliminate all inadmissible permutations via the pairwise rearrange-
ment principle.

(b) Delete all but one of the permutations which are permutation equivalent.

(c) Let I, C 1 denote the subset of permutations which are not yet eliminated or

deleted. Find a permutation 15'0' in II, satisfying

-------

S S ~ . .
e TR G Ry
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h [ts]] — h
(x7{(p)) 7~rmealalco (x(p))

either analytically or (when necessary) from numerical calculations where the p,

{0)

values are known. Then ¥ is an optimal permutation.

We now illustrate this approach in the examples given below.

Example 1’. Consider the system given in Example 1. Since the structure function
is ¢(x) = x,(x, u X3), it is easy to see that nodes 2 and 3 are permutation equivalent
and that 1 g 2, 1 ; 3. Thus among the 6 permutations in II, 123, 132, 213, 231 are
inadmissible, and both 312 and 321 are optimal.

Example 4. Consider the more general system given below:

S
—O-O -

(=)
27

Figure 4.

From the structure function of the system it is easy to verify that (1) nodes i and

¢
Jj are permutation equivalent for 1 < i < j < mend m+] <i < j < n,and (2)i >
Jfor alli < mand j > m. Thus under an optimal permutation the m most reliable

components are assigned to nodes 1,2,3,...,m. a
Example 5. Consider a system consisting of 7 components connected in the following

| ‘
____@___

fashion:

—O—

(6L

Figure 5.
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[o] C [
Here 1 S jforall j > 132 5 4,2 S 5 3 S 6, and 3 S 7. Furthermore, the

modules {2,4,5) and {3,6,7}) are permutation equivalent. Thus any permutation

x € M, must satisfy: =*, = 7, ®, > max(r,%s), and *; > max(7gx,). It follows
that there are only (g)/? = 10 permutations left in Il for consideration. [(For A
example, (7361245), (7461235) are in I, but (7341265) is inadmissible and is not in [I,.]

Without this elimination process we would need to consider all 7!/(2")° = 630 -

permutations. If the p, values are known and the values of h(x(p)) are to be
computed on a computer for selecting the best permutation, then the use of the
procedure will reduce the computer time by a factor > 50. Of course, when

combining with other results (see e.g., El-Neweihi, Proschan, and Sethuraman (1986)),

Y LTI

we can reduce the number of permutations to be considered even further. But that
is a separate problem and will not be treated here. 0
Example 6. Consider a consecutive-k-out-of-n system or a “k-consecutive failures- «:
out-of-n fails system” with nodes connected linearly. Tong (1985) shows that under -
the optimal permutation policy: 7, < 7, < ... < T(p41y2 80d T(nyy D Knpapyz > oo ;
> %n when k > n/2. The proof uses the explicit expression of the system -
reliability function. We now show that using the more general principle of pairwise :
rearrangements, the Tong result follows without knowledge of the reliability .:'
function. .
To see this, note that for the consecutive k-out-of-n system (the k- :(
consecutive-failures-out-of-n-fails system) the minimum path sets (the minimum cut -
sets) are: (1,2,...,k), 2,3,...,k+1), (3,4,...k +2),....,(n —k +1,...,n), where k > n/2. ;
Thus, in the symbols of Theorem 2 (Theorem 3), A, 2 A, holds for all ®
1 <3 <i ¢ n;{- and nj— > 1 > j > n. Consequently i ; Jj for all i,j satisfying :;.
these mequalitxehs (unless"n and j are p.e.). The rearrangement inequality in Tong
(1985) now follows. 0 =
®
]
;
"
.
®
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